THE KÁRAHNJÚKAR HYDROELECTRIC PROJECT: TRANSIENT ANALYSIS OF THE WATERWAYS SYSTEM.

Erik BOLLAERT, Laboratory of Hydraulic Constructions, EPFL, Lausanne, Switzerland
Gunnar G. TÓMASSON, VST Consulting Engineers Ltd., Reykjavik, Iceland
Jean-Pierre GISIGER, Electrowatt-Ekono AG, Zurich, Switzerland
Anton SCHLEISS, Laboratory of Hydraulic Constructions, EPFL, Lausanne, Switzerland

ABSTRACT

Landsvirkjun, the National Power Company of Iceland, intends to initiate in 2003 the construction of the Kárahnjúkar 690 MW hydropower plant. The project comprises a 190 m high Kárahnjúkar concrete-faced rockfill-dam that creates the Háslón reservoir, two saddle dams, a 40 km long main headrace tunnel, the 14 km long Jökulsá diversion tunnel, two 400 m high-pressure shafts and an underground power station. As a function of the water level in Háslón reservoir, the Jökulsá diversion tunnel generates free flow conditions in the upstream part, and pressurized flow conditions downstream. A hydraulic jump thus appears inside and the tunnel cannot be simply modeled as a conduit. A certain volume is functioning as surge tunnel during transients. The tunnel has been modeled as a conduit with a variable length, followed by a surge tunnel with an initial water level corresponding to the level of the hydraulic jump. The results revealed that the additional volume of the free-flow part significantly decreased the extreme transient pressure loadings.

RÉSUMÉ

Landsvirkjun, la Compagnie d’Hydroélectricité Nationale de l’Islande, planifie d’initier en 2003 la construction de l’usine hydroélectrique de Káráhnjúkar. Le projet comprend entre autres une digue de 190 m de hauteur créant le réservoir de Háslón, deux barrages secondaires, une galerie d’aménée principale de 40 km de longueur, le tunnel de dérivation Jökulsá de 14 km de longueur, deux conduites forcées de 400 m de chute et une centrale hydroélectrique souterraine. En fonction du niveau d’eau du réservoir de Háslón, la dérivation de Jökulsá génère un écoulement à surface libre dans la partie amont et un écoulement en charge en aval. Due à l’apparition d’un ressaut hydraulique, la galerie ne peut pas être simplement modelée comme une conduite en charge. Un certain volume fonctionne comme cheminée d’équilibre en situation d’écoulement transitoire. De ce fait, la galerie a été modelée comme une conduite avec une longueur variable, suivie par une cheminée d’équilibre dont le niveau d’eau initial correspond au niveau du ressaut. Les résultats indiquent ce volume supplémentaire diminue de façon significative les pressions extrêmes dans le système.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Term</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure head</td>
<td>H</td>
<td>m a.s.l.</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>Q</td>
<td>m³/s</td>
</tr>
<tr>
<td>Tunnel diameter</td>
<td>D</td>
<td>m</td>
</tr>
<tr>
<td>Tunnel roughness (equivalent sand roughness)</td>
<td>ks</td>
<td>mm</td>
</tr>
<tr>
<td>Tunnel roughness (Manning-Strickler)</td>
<td>K</td>
<td>m¹/³s⁻¹</td>
</tr>
</tbody>
</table>

PROJECT

Landsvirkjun, the National Power Company of Iceland, intends to construct the 690 MW Kárahnjúkar hydropower plant to supply a new aluminium smelter. The plant will harness the potential of the rivers Jökulsá á Brú and Jökulsá í Fljótsdal in eastern Iceland. The first stage of the project comprises the 190 m high Kárahnjúkar concrete-face rockfill dam, on the Jökulsá á Brú, to impound Hálslón reservoir, two saddle dams, a 40 km long headrace tunnel, two vertical pressure shafts, each 400 m deep, and the underground power station. For environmental and topographic reasons the surge tank will be a 1.4 km long inclined tunnel. In the second stage, water from the Jökulsá í Fljótsdal will be diverted at Ufsarlon into a 14 km long tunnel connected directly with the headrace tunnel. Jökulsá tunnel will act as a second surge tank for the combined Kárahnjúkar/Jökulsá pressure tunnel system, but the transition from free-surface to pressure flow conditions in this tunnel, which will take place at a location that will vary with the level of Hálslón reservoir, is the principal hydraulic problem needing to be analyzed during project design.

![Schematization of the transient waterways system](image)

Fig. 1 Schematization of the transient waterways system

The layout of the waterways was optimized for staged construction of the power plant and to allow later construction of the Jökulsá intake and tunnel, whilst the headrace tunnel is in operation. The route of the headrace tunnel depends principally on possible locations for construction adit; its vertical alignment is determined by the need for ascending drives, to allow free drainage during construction, which also requires that the adits are be sited at as low an elevation as possible. Maximum and minimum elevations along the headrace tunnel
are defined by the minimum level of Hálslón reservoir and allowance for design surge
conditions, but the maximum elevation is also limited by the need to ensure sufficient rock
cover.

The headrace tunnel will cross a slightly dipping, 1500 m thick lava pile. Individual lava
flows, mainly of olivine, tholeiite and porphyritic basalts, display typical zoning, with a dense
central part between scoria layers. Individual flows are often covered by consolidated, fluvio-
glacial sediments (sandstone, siltstone and conglomerates), typically 1-5 m thick. The
headrace tunnel will cross several paleo-valleys filled with thick sediments, mainly
conglomerates and sandstone. Over the first 10 km of this tunnel, hyaloclastites (known in
Iceland as móberg), which result from volcanic eruptions under an ice-cover, will be
countered; these very heterogeneous formations consist of pillow lava, cube-jointed
basalts, tuffs and agglomerates.

Thanks to the generally favorable rock conditions, with respect to support and permeability,
the headrace tunnel will be unlined, except over the first kilometer from the Kárahnjúkar
intake and two short sections with insufficient depth of cover. The tunnel will mostly be
evacuated by TBM (in two drives), but counter drives by drill and blast are also required by
the short construction schedule.

TRANSIENT WATERWAYS SYSTEM

A hydraulic transient analysis of the waterways system of the Kárahnjúkar Hydroelectric
Project has been performed. This transient analysis has firstly been done for construction
stage 1, consisting of the headrace tunnel (Hálslón reservoir) combined with the surge tunnel
and the Bessa diversion tunnel, and secondly for construction stage 2, with the addition of the
Jökulsá diversion and the Úfsarlón Pond (see Figure 1). The tested load cases correspond to
opening, closing and combined opening-closing or closing-opening scenarios. The surge and
water hammer calculations have been made separately. The roughness of the tunnel linings
has been varied as a function of the tested load cases. The basic parameters of the different
elements of the waterway system are presented in Figure 1. The frictional head losses are
based on the roughness values, i.e. an average Manning-Strickler value of \(K = 55 \text{ m}^{1/3}\text{s}^{-1} \) (\(k_s = 10 \text{ mm} \)) for both TBM and D&B tunnels and a value of \(K = 95 \text{ m}^{1/3}\text{s}^{-1} \) (\(k_s = 0.05 \text{ mm} \)) for
steel linings. However, for each case investigated in the transient analysis the most
unfavorable head loss parameter combination has also been applied.

The pressure tunnels are excavated by TBM or Drill & Blast (D&B) and, except of some
short stretches, unlined. For both construction methods the same roughness was used,
because the D&B cross section has been increased in order to obtain the same head loss. For
the steel lining, the Manning-Strickler value has been converted from the relative roughness
coefficient following the Prandtl-Colebrook formula, and at the design discharge (48 m\(^3\)/s for
stage 1 and 72 m\(^3\)/s for stage 2, for each pressure shaft). For the calculations the relative
roughness coefficient \(k_s \) will be used, since for large diameter tunnels the assumption of a
tunnel situated in the rough domain, according to Moody-Stanton diagram, is questionable.
For the above given range of head loss coefficients, the extreme values due to water hammer
are normally only very little influenced by the head losses. However, the maximum upsurge
and downsurge in the surge tunnel are mainly influenced by the head losses in the headrace
tunnel upstream. Local head losses have been introduced in the model at the 90\(^\circ\) bend at
entrance of surge tunnel and at the rectangular orifice at entrance of Bessa diversion tunnel.

The water hammer and surge calculations were carried out by use of the powerful and user-
friendly computer program HYDRAULIC SYSTEM, which was developed at the Laboratory
of Hydraulic Constructions (LCH) of the Swiss Federal Institute of Technology in Lausanne, Switzerland. The program uses the method of characteristics to solve the one-dimensional transient flow equations. The waterways system can be subdivided into a series of elements that are available in a library (pipes, tunnels, surge chambers, tanks, reservoirs, valves, turbines, junctions, pumps, throttles, orifices, crest overflow a.s.o.) on a graphical window. At every node of the system and for every time step Δt, the calculated results can be visualized and transferred into any spreadsheet environment. HYDRAULIC SYSTEM uses the Microsoft Windows environment and is characterized by a visually based, user-friendly approach.

The turbines are modeled as a discharge element. A time-discharge law simulates the powerhouse operating conditions. The Bessa and surge tunnel storage reservoirs are fictitious reservoirs and only serve to compute the total spilled volume. The second stage of the project involves the construction of the Jökulsá tunnel, relating the Headrace tunnel at Adit 2 with the Ufsarlón Pond. For most operating conditions, the Jökulsá tunnel generates free flow conditions in its upstream part, and pressurized flow conditions downstream. A hydraulic jump thus appears inside the tunnel, and its exact location changes with the discharge in the tunnel and the water level in Hálsión reservoir. Therefore, this tunnel cannot be simply modified as a pressure conduit. Depending on the location of the hydraulic jump, a certain volume of the tunnel is functioning as surge tunnel during pressure transients. The tunnel has been modeled as a pressurized conduit with a variable length, followed by a surge tunnel with an initial water level corresponding to the level of the hydraulic jump. The water level – volume relationship of this surge tunnel is dictated by the geometry of the Jökulsá tunnel. In this way, during the transient calculations, a correct simulation of the water mass volume in the tunnel and of the total possible friction losses has been accounted for. The total hydraulic system is presented in Figure 2 hereunder.

![Fig. 2 Numerical scheme of the transient waterways system in stage 2 of the project](image-url)
with the two reservoirs at 625 m a.s.l. at 144 m3/s of total discharge. The opening procedure generates 10% of the maximum discharge within 120 sec., followed by an increase up to 100% in 30 sec. The closing scenario lowers the maximum discharge down to 10% of its value within 7 sec. and down to 0% within 17 sec. (emergency shutdown). It is considered that these opening and closing scenarios correspond to critical loading conditions of the network. The re-opening or re-closing were performed at the most critical moment, i.e. when the water is flowing with the highest velocity downstream respectively upstream the pressure tunnels. For each of the loading cases, a water hammer calculation and a surge oscillation calculation have been performed separately. This is necessary because of the different time steps they use: for water hammer, time steps of 0.05–0.20 sec. were typical, whereas for surge oscillation calculations, time steps of 5-20 sec. have been used.

RESULTS OF THE CALCULATIONS

Some surge and water hammer results of the following load cases are compared in Figure 3:

<table>
<thead>
<tr>
<th>Construction stage</th>
<th>Loading</th>
<th>Hálslón tunnel</th>
<th>Jökulsá tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge</td>
<td>Level</td>
<td>Discharge</td>
</tr>
<tr>
<td>1</td>
<td>closing</td>
<td>96 m3/s</td>
<td>625 m a.s.l.</td>
</tr>
<tr>
<td>2</td>
<td>closing</td>
<td>74 m3/s</td>
<td>625 m a.s.l.</td>
</tr>
<tr>
<td>2</td>
<td>opening-reclosing</td>
<td>74 m3/s</td>
<td>625 m a.s.l.</td>
</tr>
</tbody>
</table>

It can be seen in Figure 3a that the closing procedure for stage 2, with a total discharge at the turbines of 144 m3/s, generates maximum pressures throughout the transient system that are very comparable to the ones for stage 1 with only 96 m3/s of total discharge. This is due to the favorable effect of the upstream free flow part of the Jökulsá diversion, which acts as an additional surge tunnel during severe transients.

Figure 3b shows that the water hammer pressures are slightly higher during stage 2, however, the surge oscillations are very similar. As outlined before, the maximum pressures at the turbines are obtained by a superposition of water hammer and surge oscillations. Obviously, the initial water hammer pressures at the turbines travel through the 40 km long headrace tunnel at a wave speed of about 1'300 m/s, i.e. in a time period of about 60-65 seconds they are reflected upstream and arrive at the turbines downstream.

Furthermore, Figure 3c presents the surge tunnel oscillations during stage 1 and stage 2 for a tunnel diameter $D = 4.5$ m and a tunnel roughness $k_s = 3.8$ mm. It can be seen that the maximum and minimum levels of oscillation in the surge tunnel are very comparable in both cases. The calculated difference of only a few meters of pressure head is insignificant regarding the precision of the calculations and the total pressure head in the transient system.

Finally, Figure 3d shows the surge tunnel oscillations for the opening – closing procedure during stage 2, for different tunnel diameters and a roughness of $k_s = 10$ mm. While the maximum surge pressures are similar to the closing procedures as presented in Figure 3c, the minimum surge pressures are very low but still higher than the entrance of the surge tunnel.
The calculations of the stage 1 and stage 2 transient pressures in the waterways system have been performed for different closing, opening and combined opening and closing emergency load cases. Furthermore, different surge tunnel diameters and roughnesses have been tested. The resulting maximum pressures throughout the system, as well as the corresponding surge tunnel oscillations, indicate that the construction stage 2 load cases, with a total discharge of 144 m³/s, results in maximum water pressures that are very comparable to the ones for construction stage 1, with only 96 m³/s of total discharge. This phenomenon is due to the fact that the upstream part of the Jökulsá diversion tunnel in construction stage 2 is characterized by free-flow conditions and thus acts as an additional surge tunnel volume during transients.

REFERENCES